Long Term Unemployment by area and year
None
|
Metadata
- High level information
- Summary information
- Statistical quality information
- Weblinks
- Keywords
- Open Data
Title
Long-term ILO unemployment by duration, gender and Welsh local authorityLast update
9 October 2024Next update
January 2025Publishing organisation
Welsh GovernmentSource 1
Annual Population Survey, Office for National StatisticsContact email
LabourMarket.Stats@gov.walesDesignation
National StatisticsLowest level of geographical disaggregation
Local authoritiesGeographical coverage
WalesLanguages covered
English and WelshData licensing
You may use and re-use this data free of charge in any format or medium, under the terms of the Open Government License - see http://www.nationalarchives.gov.uk/doc/open-government-licenceGeneral description
This dataset details Long Term Unemployment in Wales by local authority.Data collection and calculation
The local authority and Wales figures for 2001, 2002 and 2003 in these tables may not be the same as published elsewhere, as the numbers here are estimated using Welsh specific weights. These weights better reflect the population estimates for Welsh local authorities in these years.These data are taken from the ANNUAL datasets from the Labour Force Survey (LFS) carried out by the Office for National Statistics (ONS), providing labour market data back to 1996 for the NUTS2 areas in Wales, and back to 2001 for the local authorities in Wales. The availability of local authority data is dependent upon on an enhanced sample (around 350 per cent larger) for the annual LFS, which commenced in 2001.
For years labelled 2001 to 2004 in this dataset, the actual periods covered are the 12 months running from March in the year given to February in the following year (e.g. 2001 = 1 March 2001 to 28 February 2002).
Since 2004, the annual data have been produced on a rolling annual basis, updated every three months, and the dataset is now referred to as the Annual Population Survey (APS). The rolling annual averages are on a calendar basis with the first rolling annual average presented here covering the period 1 January 2004 to 31 December 2004, followed by data covering the period 1 April 2004 to 31 March 2005, with rolling quarterly updates applied thereafter.
Note therefore that the consecutive rolling annual averages overlap by nine months, and there is also a two-month overlap between the last period presented on the former March to February basis, and the first period on the new basis.
The population of working age or aged 16 and over can each be broken down into economically active and economically inactive populations. The economically active population is made up of persons in employment, and persons unemployed according to the International Labour Organisation (ILO) definition and it is this which is used as the denominator for the unemployment rates presented in the table.
LFS data is collected throughout the year, and is available from the ONS in a variety of ways. This dataset contains the latest annual results, as referred to in the second bullet below.
. Key data on the labour market is updated every month showing the position for the latest three months, for the UK and each of the UK countries and English regions. Note these data are seasonally adjusted and also that no sub-regional (i.e. local authority) data are published by the ONS to a monthly timetable.
. Annual results covering the periods described earlier are also available from the ONS, providing more detailed data from the LFS, including data for sub-Wales geographies. These annual datasets use results from the samples for the quarterly surveys used for the key series, together with results from additional persons sampled to provide a more robust (boosted) dataset, with estimates subject to much lower sampling variability.
These data are taken from the ANNUAL datasets from the Labour Force Survey (LFS) carried out by the Office for National Statistics (ONS), providing labour market data back to 1996 for the NUTS2 areas in Wales, and back to 2001 for the local authorities in Wales. The availability of local authority data is dependent upon on an enhanced sample (around 350 per cent larger) for the annual LFS, which commenced in 2001.
For years labelled 2001 to 2004 in this dataset, the actual periods covered are the 12 months running from March in the year given to February in the following year (e.g. 2001 = 1 March 2001 to 28 February 2002).
Since 2004, the annual data have been produced on a rolling annual basis, updated every three months, and the dataset is now referred to as the Annual Population Survey (APS). The rolling annual averages are on a calendar basis with the first rolling annual average presented here covering the period 1 January 2004 to 31 December 2004, followed by data covering the period 1 April 2004 to 31 March 2005, with rolling quarterly updates applied thereafter.
Note therefore that the consecutive rolling annual averages overlap by nine months, and there is also a two-month overlap between the last period presented on the former March to February basis, and the first period on the new basis.
The population of working age or aged 16 and over can each be broken down into economically active and economically inactive populations. The economically active population is made up of persons in employment, and persons unemployed according to the International Labour Organisation (ILO) definition and it is this which is used as the denominator for the unemployment rates presented in the table.
Note that as data are taken from the ANNUAL Labour Force Survey datasets they do NOT exactly match annual averages derived from the 4 QUARTERLY datasets in the relevant 12 month period covered due to differences in the sampling structure.
Further note that the data presented here for Wales and the UK are consistent with the sub-Wales level data, and so have not been seasonally adjusted.
Note finally that the ILO unemployment measure differs from another commonly used measure of unemployment, namely the claimant count. The latter is a count of all those claiming unemployment benefit, and as such it is not subject to sampling variability. However, it excludes those who are unemployed who are not eligible to claim (for example those out of work but whose partner works), and those who do not wish to claim. The ILO measure, which is a count of those who are out of work and want a job, have actively sought work in the last 4 weeks and are available to start work in the next two weeks; plus those who are out of work, have found a job and are waiting to start in the next 2 weeks, is a more encompassing measure of unemployment, which is used around the world.
Nomis is the ONS's official portal for labour market statistics. Note that some estimates from Nomis for the APS may differ slightly from those presented here due to differences in how local authority geographies are constructed.
Frequency of publication
QuarterlyData reference periods
2001 to 2024Rounding applied
Figures are rounded to the nearest hundred and so there may be some apparent slight discrepancies between the sum of constituent items and the totals as shown.Revisions information
June 2019: The percentage of unemployed persons was previously calculated as a percentage of all unemployed persons - this has now been revised so that it is based only on those who responded to the question. The data for all previous waves have been revised. Revised data is marked with an (r).Statistical quality
Annual Population Survey (APS) responses are weighted to official population projections. The projections for 2020 were 2018-based, and, therefore, were based on demographic trends that pre-dated the COVID-19 pandemic.To allow for different trends during the pandemic the responses for the APS have been reweighted on the 9 September 2021 to new populations derived using growth rates from HM Revenue and Customs (HMRC) Real Time Information (RTI). The reweighting has been applied from year ending March 2020 data onwards and gives improved estimates of both rates and levels.
The changes ONS have made to the weighting should reduce the bias of estimates at high levels of aggregation. Some smaller breakdowns may be impacted negatively and more extreme changes could be seen given the reduced size of the underlying sample since the start of the pandemic.
As the data come from a survey, the results are sample-based estimates and therefore subject to differing degrees of sampling variability, i.e. the true value for any measure lies in a differing range about the estimated value. This range or sampling variability increases as the detail in the data increases, for example individual local authority data are subject to higher variability than Wales data.